Quantile Estimation with Adaptive Importance Sampling
نویسندگان
چکیده
منابع مشابه
Extreme quantile estimation with nonparametric adaptive importance sampling
In this article, we propose a nonparametric adaptive importance sampling (NAIS) algorithm to estimate rare event quantile. Indeed, Importance Sampling (IS) is a well-known adapted random simulation technique. It consists in generating random weighted samples from an auxiliary distribution rather than the distribution of interest. The optimization of this auxiliary distribution is often very dif...
متن کاملQuantile Estimation with Latin Hypercube Sampling
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print ...
متن کاملQuantile Estimation in Successive Sampling
In successive sampling on two occasions the problem of estimating a finite population quantile has been considered. The theory developed aims at providing the optimum estimates by combining (i) three double sampling estimators viz. ratio-type, product-type and regression-type, from the matched portion of the sample and (ii) a simple quantile based on a random sample from the unmatched portion o...
متن کاملQuantile Estimation from Ranked Set Sampling Data
We consider estimation of quantiles when data are generated from ranked set sampling. A new estimator is proposed and is shown to have a smaller asymptotic variance for all distributions. It is also shown that the optimal sampling strategy is to select observations with one fixed rank from different ranked sets. Both the optimal rank and the relative efficiency gain with respect to simple rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2007
ISSN: 1556-5068
DOI: 10.2139/ssrn.1002631